Строим дом сами

Как определить число структурных единиц вещества. Определение количества вещества

    Итак, количество вещества в химии обозначается греческой буквой ню.

    Помню, как в 9-м классе мой учитель физики Игорь Юрьевич учил меня правильно писать букву ню. До этого она у меня получалась немного коряво.

    Но поскольку на БВ не проходят греческие буквы, я буду обозначать количество вещества латинской буквой v. Латинская v очень похожа на греческую ню.

    Рассмотрим следующие случаи.

    1) Если нам известно количество частиц вещества, то количество вещества можно найти по формуле:

    v количество вещества;

    n количество частиц вещества. Это безразмерная величина, то есть это просто число. Правда, это число бывает очень большим, например, 5*(10^24).

    NA постоянная Авогадро. Постоянная Авогадро представляет собой универсальную константу . NA = 6,022*(10^23) моль^(1).

    2) Если нам известна масса вещества, то количество вещества находится по следующей формуле:

    v количество вещества;

    m масса вещества;

    M молярная масса вещества находится по химической формуле вещества, при помощи периодической системы Д. И. Менделеева, путм суммирования атомных масс всех входящих в молекулу атомов с учтом имеющихся индексов.

    3) Если нам известен объм газообразного вещества, то мы можем найти количество вещества газа по такой формуле:

    v количество вещества;

    V объм газа;

    Vm молярный объм газов. Молярный объм газов это универсальная константа. Vm = 22,414 л/моль = 22414 м3/моль.

    Повторюсь, что формула v = V/Vm верна только для газов !

    Наконец, рассмотрим Ваш случай.

    Вам по условию даны объм и объмная доля.

    Я рискну предположить, что у Вас задача примерно такого рода:

    Объм газовой смеси составляет 240 л. Объмная доля кислорода в смеси равна 45%. Вычислите количество вещества кислорода в смеси.

    Такая задача решается в два действия.

    1) Находим объм кислорода:

    V (O2) = V0 * ф / 100 = 240 л * 45 / 100 = 108 л.

    (Ф это объмная доля, она обозначается греческой буквой фи. Вместо не приходится писать русскую ф).

    2) Находим количество вещества кислорода. Кислород это газ, значит, мы имеем право воспользоваться формулой v = V/Vm.

    v (O2) = V/Vm = 108 л: 22,414 л/моль = 4,818 моль . Округление произведено до тысячных.

    В химии количество вещества измеряют в молях . В одном моле количество вещества численно = постоянной Авогадро (NA = 6,022). Если число молекул N равно NA, то их вес в атомных единицах массы (а.е.м.) равен их весу в граммах. Следовательно, чтобы перевести а.е.м. в граммы, просто умножаем их на NA (6,022*а.е.м.= 1г).

    Массу 1 моля вещества принято называть молярной массой (обозначается буквой M), которая определяется посредством умножения молекулярной массы на постоянную Авогадро.

    Молекулярную массу находят путем сложения атомной массы атомов, которые входят в состав молекулы конкретного вещества. Классический пример молекулярной массы для молекул воды: 1*2+16=18 г/моль.

    Количество вещества вычисляется по формуле : n = mM, в которой m это масса вещества.

    Число молекул: N = NA*n

    для газов используется такая формула: V = Vm *n, в которой Vm это молярный объем газа, при нормальных условиях равный 22,4 л/моль.

    Общее соотношение таково:

    Количество вещества - это химический термин, который используется и некоторых случаях для подсчета количества однотипных структурных единиц.

    Еще в школе преподают подобный материал и комы было интересно запомнил это информацию и формулы.

    Но если кто забыл, может освежить память:

    Задачи решаем с применением формулы n = mM, где m принимаем за массу вещества.

    Количество вещества - это число молекул и обозначается молями.

    1 моль равняется 6,02.1023 структурных частиц вещества.

    Здесь можно посмотреть, как решаются подобные задачи.

    Нахождение количество вещества обычно используется в физике или химии. Есть несколько формул, по которым можно найти количество вещества, в зависимости от данных нам в условии задачи данных. Вот эти формулы:

    Количество вещества можно найти, следует разделить массу на молярную массу

    Частенько можно заметить, как используют такое понятие, как молярный объем - V(m). Он равняется объему одного моль вещества - имеет следующую формулу:

    Еще можно использовать следствие из одного из основных законов химической науки - закон Авогардо.

    Количество вещества представляет собой физическую величину, характеризующуюся однотипными структурными единицами, имеющимися в веществе. Так вот под этими структурными единицами подразумеваются любые составляющие вещество частицы (молекулы, ионы, атомы, электроны и прочее). Количество вещества измеряется в системе СИ в молях.

    Вот как можно найти количество вещества:

    Наибольшее распространение для поиска количества вещества получила следующая формула

    Как видим, расчты необходимо строить отталкиваясь от вводных данных, то если либо от массы, либо от объма вещества.

    Единица измерения количества вещества - моль. Обозначается через букву n . Общие формулы для нахождения:

    В формуле могли встретиться незнакомые обозначения, надо четко знать, что:

    N - число молекул;

    Vm молярный объм газов (постоянная величина равная 22,414 л/моль).

    Прежде всего давайте разберемся, что такое количество вещества.

    Под этим понятием понимают такую величину, которая характеризует количество структурных однотипных единиц вещества. Структурными единицами могут быть как атомы, молекулы, так и электроны, ионы.

    Количество вещества измеряется в молях.

    Один моль содержит определенное количество вещества, которое носит название постоянная Авогадро или число Авогадро.

    Это число равно NA = 6,022 141 79(30)1023 моль1.

    Так вот количество вещества можно найти по следующей формуле:

    n = m / M

    где m - это будет масса вещества, а M - это будет молярная масса вещества.

    Есть еще одна формула:

    n = V / Vm

    где V - это будет объем газа в нормальных условиях, а Vm - это будет молярный объем газа при нормальных условиях (он равняется 22,4 л/моль).

1. Основные понятия, определения и законы химии

1.3. Химическое количество вещества. Моль. Молярная масса

Химическое количество вещества. Моль. Молярная масса

Характеризуя порцию взятого вещества, используют его массу или объем. Однако с этой же целью можно указать и число структурных единиц во взятой порции вещества. Знать это число чрезвычайно важно, так как в химических реакциях вещества взаимодействуют в отношениях, пропорциональных именно числу структурных единиц, а не массам. Например, запись 2H 2 + O 2 = 2H 2 O обозначает, что числа (но не массы!) реагирующих молекул H 2 и O 2 относятся соответственно как 2 : 1.

Для удобства подсчета числа структурных единиц, содержание которых в любой измеримой порции вещества огромно, была введена новая физическая величина - количество вещества, которую при химических расчетах называют также химическим количеством вещества.

Химическое количество вещества - физическая величина, пропорциональная числу структурных единиц (атомов, молекул, ФЕ), содержащихся в данной порции вещества.

Обозначается химическое количество буквой n (реже ν).

Единицей химического количества вещества является моль.

Моль - порция вещества, содержащая столько его элементарных структурных единиц, сколько атомов содержится в порции нуклида С-12 массой 12 г.

Число атомов в указанной порции нуклида С-12 примерно равно 6,02 ⋅ 10 23 . Физическая величина, равная 6,02 ⋅ 10 23 моль −1 , называется постоянной Авогадро и обозначается N A:

N A = 6,02 ⋅ 10 23 моль − 1 = 6,02 ⋅ 10 23 моль − 1 .

Единицу числителя в величине N A не указывают, так как для разных случаев она может быть разная, например:

N A = 6,02 ⋅ 10 23 атомов моль,

N A = 6,02 ⋅ 10 23 молекул моль,

N A = 6,02 ⋅ 10 23 ФЕ моль.

Физический смысл постоянной Авогадро состоит в том, что ее численное значение (6,02 ⋅ 10 23) показывает число структурных единиц в 1 моль вещества. Например, 1 моль натрия (m = 23 г) содержит 6,02 ⋅ 10 23 атомов Na; 1 моль серной кислоты (m = 98 г) содержит 6,02 ⋅ 10 23 молекул H 2 SO 4 ; 1 моль карбоната кальция (m = 100 г) содержит 6,02 ⋅ 10 23 формульных единиц CaCO 3 .

Моль - это порция вещества, содержащая 6,02 ⋅ 10 23 его структурных единиц

Число структурных единиц вещества N (B) и химическое количество вещества n (B) связаны соотношением

n (B) = N (B) N A , (1.8)

N (B) = n (B)N A . (1.9)

Зная химическое количество любого вещества, можно по его химической формуле рассчитать химическое количество входящих в его состав отдельных атомов.

Один моль любого вещества численно содержит такое же химическое количество атомов, сколько их (атомов) содержится в одной молекуле (формульной единице) вещества

Например:

  • в составе молекулы Р 4 содержится 4 атома Р, а в составе 1 моль P 4 - 4 моль атомов P;
  • в составе формульной единицы Na 3 PO 4 содержится 3 атома Na, 1 атом Р и 4 атома О, а в 1 моль Na 3 PO 4 - 3 моль атомов Na, 1 моль атомов P и 4 моль атомов O.

С увеличением (уменьшением) химического количества вещества пропорционально возрастает (уменьшается) химическое количество входящих в его состав атомов. Например: 0,5 моль Na 3 PO 4 содержит 3 · 0,5 = 1,5 (моль) атомов Na; 5 моль Р 4 содержит 5 · 4 = = 20 (моль) атомов Р.

Для подобных расчетов можно использовать и так называемые стехиометрические схемы . Принципы составления стехиометрических схем и проведения расчетов показаны на примере K 2 SO 4 химическим количеством 0,3 моль:

x = n (K) = 0,3 ⋅ 2 1 = 0,6 (моль);

y = n (S) = 0,3 ⋅ 1 1 = 0,3 (моль);

z = n (O) = 0,3 ⋅ 4 1 = 1,2 (моль).

Понятие моль применимо ко всем веществам, а понятие молекула - не ко всем, а только к веществам молекулярного строения. Например, оба понятия применимы в отношении воды (вода имеет молекулярное строение), но в случае карбоната кальция (немолекулярное строение) применимо только понятие «моль».

Понятие «моль» используется также и в случае ионов, электронов, протонов, нейтронов и химических связей. Например, если N (PO 4 3 −) = 3,01 ⋅ 10 23 , то

n (PO 4 3 −) = 3,01 ⋅ 10 23 / 6,02 ⋅ 10 23 = 0,5 (моль);

N (e) = 1,505 ⋅ 10 22 ,

n (e) = N (e) / N A = 1,505 ⋅ 10 22 / 6,02 ⋅ 10 23 = 0,025 (моль) ;

2 моль молекул Н 2 (Н–Н) содержат 2 моль связей водород - водород, а 3 моль молекул Н 2 О (Н–О–Н) - 6 моль связей Н–О (в каждой молекуле содержится две связи Н–О).

Молярная масса М (В) - физическая величина, равная отношению массы вещества к его химическому количеству:

M (B) = m (B) n (B) . (1.10)

Из выражения (1.10) следуют формулы для расчета массы вещества:

m (B) = n (B) ⋅ M (B) (1.11)

и его химического количества:

n (B) = m (B) M (B) . (1.12)

Поскольку при n (B) = 1 моль численные значения n (B) и M (B) совпадают, часто говорят, что молярная масса - это масса 1 моль вещества. Это, конечно же, неверно, так как совпадают только численные значения этих величин, а их физический смысл и единицы измерения разные.

С помощью молярной массы можно легко рассчитать массу молекулы или формульной единицы вещества:

m мол, ФЕ = M (В) N A . (1.13)

Кроме того, молярную массу можно найти по формуле

M (В) = m мол, ФЕ ⋅ N A . (1.14)

Нетрудно показать, что при использовании единицы молярной массы грамм на моль ее численное значение совпадает:

  • с A r для простых веществ атомного строения:

A r (O) = 16, M (O) = 16 г моль;

  • M r сложных веществ молекулярного и немолекулярного строения:

M r (H 2 O) = 18, M (H 2 O) = 18 г моль;

M r (KOH) = 56, M (KOH) = 56 г моль.

В самом деле:

M (B) = m мол (В) ⋅ N A = M r (B) ⋅ u ⋅ N A = M r (B) ⋅ 1 N A ⋅ N A = M r (B)

M (В) = m aт ⋅ N A = A r (B) ⋅ u ⋅ N A = A r (B) ⋅ 1 N A ⋅ N A = A r (B) .

Пример 1.5. Масса молекулы вещества равна 7,31 ⋅ 10 −23 г. Рассчитайте молярную массу вещества.

Решение. Первый способ. Из формулы (1.14) следует:

M (B) = m мол (B) ⋅ N A

M (B) = 7,31 ⋅ 10 − 23 г ⋅ 6,02 ⋅ 10 23 1 моль = 44 г/моль.

Второй способ. Используем формулу (1.5):

M r (B) = m мол (B) u = 7,31 ⋅ 10 − 23 г 1,66 ⋅ 10 − 24 г = 44 ;

M (B) = 44 г/моль.

Ответ : 44 г/моль.

Газовые законы. Смеси газов

Вещества могут находиться в трех агрегатных состояниях: газообразном, жидком и твердом. Жидкое и твердое состояния называются конденсированными . Для большинства веществ агрегатные состояния взаимопереходящие: при нагревании твердое вещество вначале плавится, затем испаряется; при охлаждении газ вначале конденсируется - переходит в жидкое состояние, затем жидкость замерзает (кристаллизуется). Повышение давления и понижение температуры способствуют переходу вещества в конденсированное состояние с меньшим объемом (и наоборот - понижение давления и повышение температуры способствуют переходу вещества в газообразное состояние).

Давление газа в закрытом сосуде прямо пропорционально числу его молекул (или химическому количеству)

При переходе вещества из твердого состояния в жидкое, а затем - в газообразное расстояние между частицами последовательно возрастает, и в случае газа это расстояние в сотни раз больше размеров самих молекул. Из этого следует, что объем порции газа определяется не природой газа (размером его молекул), а расстоянием между молекулами (по существу, объем, который занимает газ, это объем свободного пространства между молекулами).

Расстояние между молекулами газа зависит от температуры и давления, а это означает, что при одинаковых внешних условиях расстояние между молекулами различных газов одинаковое.

Отсюда следует положение, известное как закон Авогадро (1811): в равных объемах различных газов при одинаковых условиях содержится одинаковое число молекул

Из закона Авогадро вытекают три следствия.

1. Одинаковое число молекул различных газов при одинаковых давлении и температуре занимают одинаковый объем.

2. При нормальных условиях (н.у.: Т = 273 К или 0 °С, p = 101,3 кПа) объем порции любого газа химическим количеством 1 моль, или молярный объем V m ,

V m = 22,4 дм 3 /моль.

3. Массы одинаковых объемов двух газов относятся как их молярные (относительные молекулярные) массы. Это отношение называется относительной плотностью газа А по газу В и обозначается как D B (A):

m (A) m (B) = D B (A) = M (A) M (B) = M r (A) M r (B) . (1.15)

С использованием V m находят объем и химическое количество газа:

V (B) = n (B) ⋅ V m ; (1.16)

n (B) = V (B)/V m . (1.17)

Формула (1.15) позволяет, зная относительную плотность неизвестного газа Х по известному газу, находить M (M r) неизвестного газа:

M (X) = D B (X) ⋅ M (B). (1.18)

Например, если относительная плотность газа Х по воздуху (М возд = 29 г/моль) равна 1,517, то молярная масса этого газа

M (X) = 29 ⋅ 1,517 = 44 (г/моль).

Относительная плотность - величина безразмерная и не зависит от температуры и давления.

Зная молярную массу газа, можно легко рассчитать плотность ρ газа (в г/дм 3):

ρ (В) = M (В) V m = M (В) 22,4 . (1.19)

Например, для азота

ρ (N 2) = M (N 2) V m = 28 г/моль 22,4 дм 3 /моль = 1,25 г/дм 3 .

По плотности газа находят его молярную массу:

M (В) = ρ(В)V m . (1.20)

Плотность газа зависит от температуры Т и давления Р : с ростом Т и уменьшением Р плотность уменьшается.

Если равны плотности ρ двух газов (ρ 1 = ρ 2), то равны и их молярные (относительные молекулярные) массы, т.е. M 1 = M 2 (и наоборот - если равны молярные массы газов, то равны и их плотности)

В случае газов справедлив также закон объемных отношений Гей-Люссака (1805–1808): в химических реакциях объемы реагирующих и полученных газов относятся как небольшие целые числа, равные их стехиометрическим коэффициентам

Например, для реакции

4NH 3 + 5O 2 = 4NO + 6H 2 O

V (NH 3) V (O 2) = 4 5 ;

V (O 2) V (NO) = 5 4 .

Пример 1.6. Относительная плотность (н.у.) некоторого газа X по аргону равна 1,2. Найдите массу молекулы газа X.

Решение . Используя формулу (1.18), найдем молярную массу газа Х:

M (X) = D Ar (X) ⋅ M (Ar) ,

M (X) = 1,2 ⋅ 40 = 48 г/моль.

По формуле (1.13) рассчитаем массу молекулы газа X:

m мол (X) = M (X) N A = 48 6,02 ⋅ 10 23 = 7,97 ⋅ 10 − 23 (г).

Можно использовать также формулу (1.7):

m мол (X) = M r (X) u = 48 ⋅ 1,66 ⋅ 10 − 24 = 7,97 ⋅ 10 − 23 (г).

Ответ : 7,97 ⋅ 10 −23 г.

Способы собирания газов. Молярная концентрация газа

Рассмотрим лабораторные способы собирания газов. Таких способов два (рис. 1.1).


Рис. 1.1. Лабораторные способы собирания кислорода нагреванием KМnO 4:

А - способ вытеснения воды; б - способ вытеснения воздуха

Очевидно, что способом вытеснения воды можно собирать только те газы, которые в воде не растворяются и с ней не взаимодействуют (водород, метан, азот, кислород). Таким способом нельзя собирать газы, которые в воде хорошо растворяются или с ней взаимодействуют (HCl, HBr, HI, HF, NH 3). Оксид углерода(ІV) СО 2 в воде растворяется сравнительно плохо, поэтому его можно собирать данным способом.

При собирании газа способом вытеснения воздуха нужно правильно располагать пробирки:

  • горлышком вверх, если газ тяжелее воздуха, т.е. M (газа) > M (возд) . Примеры: CO 2 , SO 2 , HCl;
  • горлышком вниз, если газ легче воздуха, т.е. M (газа) < M (возд) . Примеры: H 2 , Ne, NH 3 , CH 4 .

Для характеристики газов используют молярную концентрацию c , равную отношению химического количества газа к объему порции газа:

c (X) = n (X) V (X)

Смеси газов подобно индивидуальным газам характеризуются молярной (относительной молекулярной) массой, плотностью ρ, относительной плотностью D по другому газу, а также массовыми w и объемными φ долями отдельных газов:

M (смеси) = m (смеси) n (смеси) , (1.22)

w = m (газа) m (смеси) , (1.23)

φ = V (газа) V (смеси) , (1.24)

φ = n (газа) n (смеси) , (1.25)

D A (смеси) = M (смеси) M (A) , (1.26)

ρ (смеси) = M (смеси) V m = m (смеси) V (смеси) . (1.27)

Молярную массу смеси газов удобно находить по объемным долям и молярным массам отдельных газов:

M (смеси) = M 1 φ 1 + M 2 φ 2 + M 3 φ 3 + ... + M n φ n . (1.28)

Очевидно:

φ 1 + φ 2 + φ 3 + ... + φ n = 1.

Для смеси двух газов (φ 1 + φ 2 = 1) φ 2 = 1 − φ 1 . Тогда

M (смеси) = M 1 φ 1 + M 2 φ 2 = M 1 φ 1 + M 2 (1 − φ 1) . (1.29)

Пример 1.7. Найдите молярную массу газовой смеси (н.у.), состоящей из азота объемом (н.у.) 1,12 дм 3 и кислорода массой 5,76 г.

Решение . По формулам (1.12) и (1.17) находим химическое количество газов и смеси:

n (O 2) = m (O 2) M (O 2) = 5,76 32 = 0,18 (моль),

n (N 2) = V (N 2) V m = 1,12 22,4 = 0,05 (моль).

Таким образом,

n (смеси) = n (O 2) + n (N 2) = 0,05 + 0,18 = 0,23 (моль).

По формуле (1.25) находим объемные доли газов в смеси:

φ (N 2) = 0,05 0,23 = 0,217 ,

φ (O 2) = 0,18 0,23 = 0,783

или (так как смесь состоит из двух газов):

φ(O 2) = 1 − 0,217 = 0,783.

По формуле (1.29) находим молярную массу смеси:

M (смеси) = M (O 2) φ (O 2) + M (N 2) φ (N 2) ;

M (смеси) = 32 ⋅ 0,783 + 28 ⋅ 0,217 = 31,2 (г/моль).

Ответ : 31,2 г/моль.

1. Молярная масса смеси газов находится между значениями молярной массы самого легкого и самого тяжелого газа смеси. Например, молярная масса смеси NH 3 (M = 17 г/моль) и CO 2 (М = 44 г/моль) в зависимости от объемных долей газов может принимать значения 17 < M (смеси) < 44 (г/моль).

2. Если молярные массы газов в смеси одинаковые, то молярная масса смеси не зависит от объемных долей отдельных газов. Например, молярная масса смеси CO, C 2 H 2 и N 2 всегда равна 28 г/моль независимо от объемных долей компонентов.

3. Если к смеси газов добавляется газ, M которого больше, чем M самого тяжелого газа смеси, то M (смеси) возрастает. Например, если к различным по составу смесям N 2 и O 2 добавлять CO 2 , то M (смеси) возрастет.

4. Если к смеси газов добавляется газ, M которого меньше M самого легкого газа смеси, то M (смеси) смеси уменьшается. Например, если к различным по составу смесям Ne и Ar добавлять He, то M (смеси) уменьшится.

5. При равенстве объемных долей газов в смеси молярная масса смеси равна среднеарифметическому молярных масс отдельных газов. Например, для смеси равных объемов CO 2 и O 2:

M (смеси) = M (O 2) + M (CO 2) 2 = 32 + 44 2 = 38 г/моль.

ОПРЕДЕЛЕНИЕ

Количество вещества - это число структурных элементов (атомов, молекул, ионов и др.) в системе. Единицей измерения количества вещества является моль .

Моль - количество вещества системы, которое содержит столько определенных структурных звеньев (молекул, атомов, ионов, электронов и т.д.), сколько содержится в 0,012 кг углерода-12.

Масса одного атома 12 С равна 12 а.е.м., поэтому число атомов в 12 г изотопа 12 С равно:

N A = 12 г / 12 × 1,66057×10 -24 г = 1/1,66057×10 -24 = 6,0221×10 -23 .

Таким образом, моль вещества содержит 6,0221×10 -23 частиц этого вещества.

Физическую величину N A называют постоянной Авогадро, она имеет размерность = моль -1 . Число 6,0221×10 -23 называют числом Авогадро. Таким образом количество вещества будет вычисляться как:

где N - число структурных звеньев, а N A — постоянная Авогадро.

Молярная масса (М) - это масса 1 моль вещества. Легко показать, что численные значения молярной массы М и относительной молекулярной массы M r равны, однако первая величина имеет размерность [M] = г/моль, а вторая безразмерна:

M = N A × m (1 молекулы) = N A × M r × 1 а.е.м. = (N A ×1 а.е.м.) × M r = × M r .

Это означает, что если масса некоторой молекулы равна, например, 44 а.е.м., то масса одного моля молекул равна 44 г.

Постоянная Авогадро является коэффициентом пропорциональности, обеспечивающим переход от молекулярных отношений к молярным. Поэтому другая формула для вычисления количество вещества выглядит следующим образом:

где m - масса вещества (г), а М - его молярная масса (г/моль).

Количество вещества газа можно рассчитать при помощи закона Авогадро: в равных объемах различных газов при одинаковых условиях (температуре и давлении) содержится одинаковое число молекул. Следовательно, при нормальных условиях 1 моль различных газов занимает объем, равный 22,4 л. Этот объем называется молярным объемом газа:

где V - объем газа (л), а V m - молярный объем (л/моль).

Примеры решения задач

ПРИМЕР 1

Количество вещества. Моль — единица количества вещества. Число Авогадро

Помимо рассмотренных ранее абсолютной и относительной массы атомов и молекул, в химии большое значение имеет особая величина — количество вещества. Количество вещества определяется числом структурных единиц (атомов, молекул, ионов или других частиц) этого вещества. Количество вещества обозначается буквой ν. Вы уже знаете, что любая физическая величина имеет свою единицу измерения. Например, длину тела измеряют в метрах, массу вещества — в килограммах. А как измеряют количество вещества? Для измерения количества вещества существует особая единица — моль.

Моль — это количество вещества, содержащее столько частиц (атомов, молекул или других), сколько содержится атомов углерода в 0,012 кг (т.е. 12 г углерода. Это означает, что один моль цинка, один моль алюминия, один моль углерода содержат одно и то же число атомов. Также это означает, что один моль молекулярного кислорода, один моль воды содержат одно и то же число молекул. Как в первом, так и во втором случаях число частиц (атомов, молекул), которое содержится в одном моль, равно числу атомов в одном моль углерода. Экспериментально установлено, что один моль вещества содержит 6,02 · 1023 частиц (атомов, молекул или других). Таким образом, моль — количество вещества, которое содержит 6,02 · 1023 частиц, из которых состоит эта вещество. Если вещество состоит из атомов (например, цинк, алюминий и др.), то один моль этого вещества — это 6,02 · 1023 ее атомов. Если вещество состоит из молекул (например, кислород, вода и другие), то один моль этого вещества — это 6,02 · 1023 ее молекул. Эта величина 6,02 · 1023 названа в честь известного итальянского ученого Амедео Авогадро «постоянной Авогадро» и обозначается NA. Число Авогадро показывает число частиц в одном моль вещества, поэтому могло бы иметь размерность «частиц / моль». Однако поскольку частицы могут быть разными, слово «частицы» опускается и вместо него в размерность числа Авогадро записывается единица: «1/моль» или «моль-1». Таким образом: NA = 6,02 · 1023 .

Число Авогадро очень велико. Сравним: если собрать 6,02 · 1023 шаров, имеющих радиус 14 сантиметров, то их суммарный объем составит примерно такой же объем, который занимает вся наша планета Земля.

Для определения числа атомов (молекул) в определенном количестве вещества необходимо воспользоваться следующей формулой: N = ν · NA,

где N — число частиц (атомов или молекул).

Например, определим количество атомов алюминия, содержащиеся в 2 моль вещества алюминия: N (Al) = ν (Al) · NA.

N (Al) = 2 моль · 6,02 · 1023 = 12,04 · 1023 (атомов).

Кроме того, можно определить количество вещества по известным числом атомов (молекул):

Наиболее типичными процессами, осуществляемыми в химии, являются химические реакции, т.е. взаимодействия между какими-то исходными веществами, приводящие к образованию новых веществ. Вещества реагируют в определенных количественных отношениях, которые требуется учитывать, чтобы на получение желаемых продуктов затратить минимальное количество исходных веществ и не создавать бесполезных отходов производства. Для расчета масс реагирующих веществ оказывается необходимой еще одна физическая величина, которая характеризует порцию вещества с точки зрения числа содержащихся в ней структурных единиц. Само по себе эго число необычайно велико. Это очевидно, в частности, из примера 2.2. Поэтому в практических расчетах число структурных единиц заменяется особой величиной, называемой количеством вещества.

Количество вещества - это мера числа структурных единиц, определяемая выражением

где N(X) - число структурных единиц вещества X в реально или мысленно взятой порции вещества, N A = 6,02 10 23 - постоянная (число) Авогадро, широко используемая в науке, одна из фундаментальных физических постоянных. В случае необходимости можно использовать более точное значение постоянной Авогадро 6,02214 10 23 . Порция вещества, содержащая N a структурных единиц, представляет собой единичное количество вещества - 1 моль. Таким образом, количество вещества измеряется в молях, а постоянная Авогадро имеет единицу измерения 1/моль, или в другой записи моль -1 .

При всевозможных рассуждениях и расчетах, связанных со свойствами вещества и химическими реакциями, понятие количество вещества полностью заменяет понятие число структурных единиц. Благодаря этому отпадает необходимость использовать большие числа. Например, вместо того чтобы сказать «взято 6,02 10 23 структурных единиц (молекул) воды», мы скажем: «взят 1 моль воды».

Всякая порция вещества характеризуется как массой, так и количеством вещества.

Отношение массы вещества X к количеству вещества называется молярной массой М(Х):

Молярная масса численно равна массе 1 моль вещества. Это важная количественная характеристика каждого вещества, зависящая только от массы структурных единиц. Число Авогадро установлено таким, что молярная масса вещества, выраженная в г/моль, численно совпадает с относительной молекулярной массой М г Для молекулы воды М г = 18. Это значит, что молярная масса воды М(Н 2 0) = 18 г/моль. Пользуясь данными таблицы Менделеева, можно вычислять и более точные значения М г и М(Х), но в учебных задачах по химии это обычно не требуется. Из всего сказанного понятно, насколько просто рассчитать молярную массу вещества - достаточно сложить атомные массы в соответствии с формулой вещества и поставить единицу измерения г/моль. Поэтому формулу (2.4) практически используют для расчета количества вещества:

Пример 2.9. Рассчитайте молярную массу питьевой соды NaHC0 3 .

Решение. Согласно формуле вещества М г = 23 + 1 + 12 + 3 16 = 84. Отсюда, по определению, M(NaIIC0 3) = 84 г/моль.

Пример 2.10. Какое количество вещества составляют 16,8 г питьевой соды? Решение. M(NaHC0 3) = 84 г/моль (см. выше). По формуле (2.5)

Пример 2.11. Сколько толик (структурных единиц) питьевой соды находится в 16,8 г вещества?

Решение. Преобразуя формулу (2.3), находим:

AT(NaHC0 3) = N a n(NaHC0 3);

tt(NaHC0 3) = 0,20 моль (см. пример 2.10);

N(NaHC0 3) = 6,02 10 23 моль" 1 0,20 моль = 1,204 10 23 .

Пример 2.12. Сколько атомов находится в 16,8 г питьевой соды?

Решение. Питьевая сода, NaHC0 3 , состоит из атомов натрия, водорода, углерода и кислорода. Всего в структурной единице вещества 1 + 1 + 1+ 3 = 6 атомов. Как было найдено в примере 2.11, данная масса питьевой соды состоит из 1,204 10 23 структурных единиц. Поэтому общее число атомов в веществе составляет

6-1,204 10 23 = 7,224 10 23 .

Загрузка...